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The performance of a fuel cell is subject to uncertainties on its operational and material parameters.
Among operational parameters, temperature is one of the most influential factors. This work focuses on
this parameter. A statistical analysis is developed on the output voltage of proton exchange membrane
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fuel cell models. The first model does not include any degradation, whereas the second one introduces a
degradation rate on the cell active area. To complete the simulation work, a full factorial design is carried
out and a statistical sensitivity analysis (ANOVA) is used to compute the effects and contributions of
important parameters of the model on the output voltage.

© 2009 Elsevier B.V. All rights reserved.
tochastic analysis
tatistical analysis
esign under uncertainty

. Introduction

Proton exchange membrane fuel cells are considered to be reli-
ble for transportation applications due to their low operating
emperature and pressure resulting in a possible quick start-up
1,2]. The cell performance can be determined by its output volt-
ge [3,4]. It is mainly controlled by the issues of water and thermal
anagement [5,6]. Thus, studies on PEM modelling for improved
ater and thermal management were done by Bernadi and Ver-
rugge [7,8], Springer et al. [9,10], Baschuk and Li [11] and also Rowe
nd Li [12].

Then, works on parametric analysis for model based design
ere done by Mishra et al. [13], Mawardi et al. [14] and Min et

l. [15]. Those authors considered the different parameters deter-
inistic. Subramanyan et al. [16] were aware of the fact that

perating parameters such as temperature are subject to uncer-
ainties. Recently, design of experiment method was used for
arametric analysis by Yu et al. [17] and Wu et al. [18].

A mathematical framework that incorporates all the main
arameters of a cell and with most terms and coefficients derived

rom theory and also with empirical parameters for the changing
erformance is necessary for physics-based simulation and robust
esign. To achieve this objective, a model developed by Fowler et
l. [19] will be used. For the stochastic analysis, the uncertainty on

∗ Corresponding author. Tel.: +33 384583654; fax: +33 384583636.
E-mail address: latevi-atatoe.placca@utbm.fr (L. Placca).

378-7753/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
oi:10.1016/j.jpowsour.2009.05.013
a parameter is at first quantified and then propagated through a
deterministic model to build the output distribution. This latter is
finally analysed for robust design objectives.

In this present work, the operating parameters with uncertainty
are represented as Gaussian and uniform probability distributions.
Gaussian distributions are quantified in terms of the mean and vari-
ance values and uniform distributions are quantified in terms of
lower and upper bounds. A Gaussian distribution is a quasi-realistic
approach whereas a uniform distribution is a severe approach.
More information about these two distributions can be found in
ref. [31].

Parameters are randomly generated with their respective distri-
butions and a semi-empirical model is used for the cell operation.
The results of the simulations are used to construct the probability
distribution of the output voltage delivered by the cell. Parametric
analysis is performed on the output voltage distribution for several
values of the input parameters.

The present work is organised as follows: an introduction to
uncertainty in systems engineering is described in Section 2 then
the semi-empirical PEM fuel cell used for the analysis without con-
sidering degradation is described in Section 3 with its stochastical
analysis and results. It is followed by the description of a new model
based on the first one completed with a degradation of the cell

active area in Section 4 with its stochastical analysis and results.
Finally, a full factorial design of experiment is made and an analysis
of variance (ANOVA) is used to compute the effects and contribu-
tions of important parameters of the model to the output voltage
in Section 5.

http://www.sciencedirect.com/science/journal/03787753
http://www.elsevier.com/locate/jpowsour
mailto:latevi-atatoe.placca@utbm.fr
dx.doi.org/10.1016/j.jpowsour.2009.05.013
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Table 1
Nomenclature [19].

A cell active area (cm2)
C∗

H+ proton concentration at the cathode membrane/gas interface
(mol cm−3)

C∗
H2

liquid phase concentration of hydrogen at anode/gas interface
(mol cm−3)

C∗
H2O water concentration of the cathode membrane/gas interface

(mol cm−3)
C∗

O2
oxygen concentration of the cathode membrane/gas interface
(mol cm−3)

ENernst thermodynamic potential (V)
E0

T
standard electrode potential

F Faraday’s constant (96487 C eq.−1)
i current density (A cm−2)
I current (A)
ko

a, ko
c rate constants for the anode and cathode reactions,

respectively (cm s−1)
kcell empirical term accounting for the apparent rate constants for

the anode and cathode reactions
PH2 partial pressure of hydrogen at anode/gas interface (atm)
PO2 partial pressure of oxygen at the cathode membrane/gas

interface (atm)
l thickness of the membrane layer (cm)
rM membrane specific resistivity for the flow of hydrated protons

(� cm)
T cell temperature (isothermal assumption in degrees K)
�Ge standard state free energy of the cathode reaction (J mol−1)
�Gec standard state free energy of chemisorptions from the gas state

(J mol−1)
nc number of cells
Relectronic resistance to electron transfer in the graphite collector plates

and graphite electrodes
Rproton resistance to proton transfer in the solid polymer membrane
Rinternal internal resistance of the membrane
k2 empirical parameter representing the ageing of the polymeric

membrane (h−1)

Greek letters
˛c chemical activity parameter for the cathode
ε diffusivity correction factor
�activation the activation contribution to the cell activation overvoltage (V)
�ohmic ohmic contribution to cell overvoltage (V)
�electronic

ohmic
electronic ohmic contribution to cell overvoltage (V)

�proton
ohmic

protonic ohmic contribution to cell overvoltage (V)
�concentration concentration overvoltage (V)
�1, �2, �3, �4 empirical coefficients for calculation of activation overvoltage

activation 1 2 3 O2 4

where

�1 = −
(

�Gec

2F

)
−

(
�Ge

˛cncF

)
(3a)

Table 2
Values of parameters used.

PH2 = 1.5 atm
PO2 = 1.5 atm
�Ge = 237, 190 J/mol
�Gec = −664, 167.8 J/mol
nc = 1
F = 96,487
14 L. Placca et al. / Journal of Po

. Uncertainty in systems engineering

Uncertainty plays a major role in the analysis of many fields
rom engineering to economics. Its concepts and ideas have been
ssociated with gambling and games for a long time. The ancient
reeks of the 4th century BC were the first civilization having con-
idered uncertainty primarily in the context of epistemology. In
act, the word “epistemology” is derived from the Greek “epis-
eme”, meaning “knowledge”, and logos which one meaning is
theory”. Epistemology considers the possibilities and limits of
uman knowledge. Aristotle thought that people should make deci-
ions on the basis of “desire and reasoning to some end” but
uggested no guidance to the likelihood of a successful outcome. In
pite of considering uncertainty, the Greeks turned to the oracles
hen they wanted to predict the future [20].

In systems engineering there are two definitions for uncertainty:
rigorous and theoretical one and a more relaxed and practical one

21–23]. The rigorous definition refers to “uncertainty” as “vague-
ess” or “ambiguity”. “Vagueness” is considered as the difficulty
f making sharp and precise distinctions in the world. “Ambigu-
ty” refers to “situations in which the choice between two or more
lternatives is left unspecified.” For Klir and Folger [24], ambiguity
s separated into nonspecificity of evidence, dissonance in evidence,
nd confusion in evidence.

The practical definition refers to “uncertainty” as a distribu-
ion of outcomes with various likelihoods of both occurrence and
everity. It interferes with the definition of risk which is a measure
f uncertainty of achieving an objective. Risk level is determined
y the probability of occurrence and the consequences of occur-
ence. INCOSE Systems Engineering Handbook [25] classify risk into
echnical, cost, schedule and programmatic. The two distinct clas-
ifications are in Fig. 1.

In the present work, the practical definition of uncertainty will
e used.

. Nondegrading PEM fuel cell model

The model used for this study is a semi-empirical model of
owler et al. [19] giving a unique equation that links the voltage
elivered by a cell to the inputs parameters. It is useful for intro-
ucing for example, a degradation rate and studying its effects on
he output voltage.

.1. Model mathematical equation and its validation

Starting with the general expression for the voltage for a single
ell:

cell = ENernst + �activation + �ohmic (1)

The meanings of the different terms of Eq. (1) are presented in
able 1. All quantities in Eq. (1) are in units of volts and the over-
oltage terms (�activation, �ohmic) are all negative (Tables 2 and 3).

For a more accurate model, the concentration overvoltage term
concentration is added to Eq. (1) [26,27] but this term is not taken into
ccount in this model because the current density i will be supposed
o be inferior to 1 A cm−2 in order to prevent concentration losses.

Nernst = E0
T +

(
RT

2F

)
× [ln(PH2 × P1/2

O2
)] (2)
Numerically, E0
T = 1.229 − 0.85 × 10−3(T − 298.15) and replac-

ng constants by their values, we will have the expression:

Nernst = 1.229 − 0.85 × 10−3(T − 298.15)

+4.31 × 10−5 × T × [ln(PH2 × P1/2
O2

)] (2′)
� semi-empirical parameter representing the equilibrium water
content of the membrane, H2O/SO−

3

� = � + � T + � T
[
ln(c∗ )

]
+ � T[ln(I)] (3)
kcell = 0.00295
R = 8.3147
˛c = 0.5
A = 50 cm2

cH2 = 0.85 mol cm−3

cO2 = 0.05 mol cm−3

i = I/A
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Fig. 1. Uncertainty classificati

2 =
(

R

˛cncF

)
ln[ncFAk0

c (c∗
H+ )(1−˛c)(c∗

H2O)(˛c)]

+
(

R

2F

)
ln[4FAk0

a(c∗
H2

)] (3b)

3 = R(1 − ˛c)
˛cncF

(3c)

4 = −
(

R

2F
+ R

˛cncF

)
(3d)

For later use, the �2 term in Eq. (3b) can be rewritten as the
ollowing, in order that all the rate constants for the overall reaction
re grouped together in one term (which helps in the development
f the degradation model):

2 =
(

R

˛cncF

)
ln

[
ncFk0

c (c∗
H+ )(1−˛c)(c∗

H2O)(˛c)(k0
a)

nc˛c/2]
+

(
R

2F
+ R

˛cncF

)
ln(A) + R

2F
ln

[
4F(c∗

H2
)
]

(3b′)

2 = kcell + 0.000197 ln(A) + 4.3 × 10−5 ln
(

c∗
H2

)
(3b′′)

The parameter kcell includes rate constants for the anode and
athode reactions, as well as some properties specific to the cell
esign such as effective catalyst surface area and the concentration
f protons and water at the interface. As such, kcell is a measure of
he apparent catalytic activity.
ohmic = �electronic
ohmic + �proton

ohmic (4)

ohmic = −I(Relectronic + Rproton) (4a)

ohmic = −IRinternal (4b)

able 3
SM data.

actors t T k2

inimum level −4 −4 −4
−3
−2
−1

ntermediate level(s) 0 0 0
1
2
3

aximum level 4 4 4
systems engineering [24,25].

According to [19],

Relectronic � Rproton (4c)

We can write Rproton as:

Rproton = rMl

A
(4d)

rM = 181.6[1 + 0.03(I/A) + 0.062(T/303)2(I/A)2.5]
[� − 0.0634 − 3(I/A)] exp{4.18[(T − 303)/T]} (4e)

Finally,

�ohmic = −I × rMl

A
(4f)

The following values will be used for the unknown variables
[2,19,28] for the first part of this work.

To validate the model, the voltage curve represented in Fig. 2
is compared to refs. [2,19,28], it seems to correspond to the
voltage–current curve of the literature.

The graph in Fig. 2 also confirms that the voltage curve increases
with the temperature, as noticed by refs. [29,30].

This model will be the basic model used for the present work.
Some parameters of the model such as temperature are subject

to uncertainties [30]. In the next section, the influence of a random
temperature on the output voltage will be studied by the simulation
method.

3.2. Effect of the temperature uncertainty on the polarisation
curve

In Fig. 3, a stochastic convergence analysis is used to determine
the minimum number of numerical samples to generate randomly
to reach an acceptable mean and an acceptable standard deviation
of Vcell.

According to Fig. 3, a minimum of 600 random samples is suf-
ficient to ensure the convergence to the mean and the standard
deviation. 1000 numerical samples will be generated in this work.

Considering the practical definition of uncertainties in Section
2, the temperature will be assumed to follow firstly a Gaussian dis-
tribution with a mean of 353 K and a standard deviation of 3.53 K
and secondly a uniform distribution with 347 and 359 K as lower
and upper bounds which are acceptable referring to Santarelli et al.
[28]. These values are chosen in order to have the same mean and

the same standard deviation for both distributions to allow com-
parisons. The current density i (in A cm−2 units) takes successively
the following values: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.

Fig. 4 represents the voltage of the cell called ‘Vcell’ with
both cases of stochastical temperature distributions. The values of
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Fig. 2. Voltage curv

cell are more spread for the Gaussian distribution. This result is
xpected as for a uniform distribution, each interval of the same
ength is equally probable.

An analysis of one vertical block of Vcell in Fig. 4 at a specific
urrent density of 0.6 A cm−2 can be done with its histogram to
iew the type of distribution of Vcell in Fig. 5.

The distribution of Vcell seems to be Gaussian for a Gaussian

emperature and uniform for a uniform temperature but this visual
eduction needs to be proved by a statistical analysis.

For this purpose, the coefficient of variance (COV) which is
efined by the division of the standard deviation by the mean will
e used. It can be understood as “a certain percentage of uncertain-

Fig. 3. Stochastic convergence analysis of the m
r current density i.

ties accepted”. For instance we accept 1% of uncertainties on the
temperature referring to ref. [29]. The results on the output voltage
are at the top of Fig. 6. We can notice that the increase of the coeffi-
cient of variance of the output voltage is almost exponential versus
current density for both Gaussian and uniform distributions rep-
resenting a constant COV of 1%. Two additional helpful statistical
tools for distributions analysis are the skewness and the kurtosis.

Skewness is a measure of the asymmetry of the probability dis-
tribution and kurtosis indicates whether a probability distribution
is peaked or flat [31]. The mathematical definitions of these two
terms are in Appendix A. Skewness of the output voltage in the
case of Gaussian and uniform temperature nearly equals to 0 as

ean and the standard deviation of Vcell .
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Fig. 4. Vcell versus current density with a Gaussia

ndicated by the second curve of Fig. 6. Finally, the kurtosis of 3
or the Gaussian temperature and 1.8 for the uniform one on the
hird curve of Fig. 6 confirm that the type of distribution of the
utput voltage is the one of the input temperature for this model.
his result will be confirmed by the results of the work in Section
, as a linear relationship can be established between Vcell and the
emperature T.
In this model, all the components parameters, notably the cell
eactive area A, are assumed to be constant but in real operating
onditions, they are subject to degradations and decrease over time
32–34]. A model integrating one characteristic degradation will be
tudied in the next section.

Fig. 5. Histogram of Vcell for i = 0.6 A cm−2 for 1000 Gaussian
) and a uniform (right) temperature distribution.

4. Degrading PEM fuel cell model

Many failures modes are encountered during PEM fuel cells
operations involving mechanical, thermal and chemical processes.
All PEM fuel cell components are subjected to these degrada-
tions [32–35] and many efforts have been made to model those
degradations. For example, Shah et al. [35] modelled the chemical

degradations of the membrane of PEM fuel cells, Meyers and Dar-
ling [36] proposed a mathematical model of the corrosion of carbon
catalyst supports, Bu et al. [37] studied Pt/C dissolution and depo-
sition in Nafion electrolyte. The degradation processes are complex
and difficult to take into account in one model. To simplify the

(left) and uniform (right) distributed temperatures.
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temperatures T. Vcell distribution is more spread in the first case as
in the previous model.

It is of interest to analyse one vertical block of the Vcell graph,
for example at a specific time of 1500 h (half of the overall running
time), and to draw its histogram to view the distribution of Vcell.
Fig. 6. Coefficient of variance, skewness and kurtosis of Vcell versus

odel, only degradations on the cell reactive area are considered
nd the degradation rate suggested gathers all types of degrada-
ion concerning the cell active area. The drop of this surface during
ycling has been measured by Tang et al. [38]. These experimental
alues have been fitted and the resulting model has been taken into
ccount to simulate the decrease of the cell active area A.

.1. Model mathematical equation and its validation

All the expressions are the same as in Section 3 except for the cell
eactive area A which follows the expression deduced empirically
rom Tang et al. [38]:

= 2.5 + 50 exp(−k2 × t) (5)

here k2 is the degradation rate of the membrane (h−1); t is the
urrent time (h).

This modified model will allow to simulate the decrease of the
oltage over the current time t.

k2 is chosen equal to 0.0002 for plotting which is acceptable
ompared with refs. [19,39]. This expression of the cell active area
s coherent with the observations of Tang et al. [38] who noticed
hat the cell active area was reduced to about 1/3 of its original
alue after 80 cycles which corresponds approximately to a 2000 h
peration in this model. The ageing of the fuel cell will be studied
n this section through the representation of the voltage of a cell
ubmitted to a current of 30 A.

Fig. 7 confirms results of refs. [29,30]. A running time t of 3000 h
eads to a decrease of the voltage down to 0.43 V which corresponds
o the lower tolerated limits for fuel cells.

.2. Integration of uncertainties into the model and analysis

According to Coppo et al. [29], and Mawardi and Pitchumani

30], uncertainties on temperature are a major problem in a PEM
uel cell. So it is interesting to generate randomly a temperature
nd to analyse the influence on the Vcell. Next, we can consider
he temperature as constant and generate randomly the degrada-
ion rate k2. Then, both previous cases can be combined to the case
nt density with a Gaussian and uniform temperature distribution.

when temperature and the degradation rate are randomly gener-
ated.

4.2.1. Effects of the temperature uncertainty
The temperature T is assumed to follow a Gaussian distribution

with a mean of 353 K and a standard deviation of 3.53 K, then a uni-
form distribution with 347 and 359 K as lower and upper bounds.
The degradation rate of the cell active area k2 has a constant value of
0.0002. To ensure the quality of the statistical results, 1000 values
of T are generated.

The left-hand side of Fig. 8 shows the spread of Vcell for 1000
gaussianly generated temperatures T, whereas the right-hand side
of Fig. 8 shows the spread of Vcell for 1000 uniformly generated
Fig. 7. Voltage curve over running time for current I = 30 A at three fixed tempera-
tures.
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Fig. 8. Vcell versus time for current I = 3

The histogram on the left-hand side of Fig. 9 shows a Gaussian
istribution of Vcell, with 1000 generated temperatures around the
ean (at the centre of the histogram) and few data on the bounds.

he right-hand side histogram seems to confirm that Vcell is uni-
ormly distributed.

To complete the identification of the distribution type of Vcell, it
s necessary to plot the coefficient of variance (COV), skewness and
urtosis of Vcell versus time t with Gaussian and uniform distributed

emperatures in Fig. 10.

The first curve of Fig. 10 indicates that an input uncertainty of
% on the temperature results in an exponential growth of the
cell uncertainty up to 5% while the current time is in the range
f 0–3000 h. The second curve of Fig. 10 shows a slight fall of the

Fig. 9. Histogram of Vcell at time t = 1500 h f
ith randomly distributed temperature.

skewness of Vcell for a uniform temperature down to −0.05 and a
greater fall for a Gaussian temperature down to −0.1. The different
values of the skewness are very close to 0 so the distribution of Vcell
is nearly symmetric in both cases. The third curve of Fig. 10 clearly
shows that the kurtosis of both Gaussian and uniform temperatures
cases of Vcell remain constant at nearly 3 and 1.8, respectively.

To sum up, the distribution of the output voltage with a Gaus-
sian temperature is nearly Gaussian and in the case of a uniform

distribution is nearly uniform because both distributions are not
rigorously symmetric. This can have a great influence on the
extreme values which will not be Gaussian or uniform. The degra-
dation of the cell active area probably seems to modify slightly the
distribution of the output voltage as it is the only difference with

or randomly distributed temperature.
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Fig. 10. COV, skewness and kurtosis of Vcell ve

he previous model. Degradation rate is an important parameter
nd needs to be studied.

The next section analyses the effect of a random degradation
ate on the output voltage. To achieve this objective, the degrada-
ion rate of the cell active area k2 is generated randomly while the
emperature remains deterministic.

.2.2. Effects of the degradation rate of the cell active area

ncertainty

The degradation rate of the cell active area k2 is randomly gen-
rated as a Gaussian distribution with a mean of 0.0002 and a
tandard deviation of 0.00002, then as a uniform distribution with
.000165 and 0.000235 as lower and upper bounds, while the tem-

Fig. 11. Vcell versus time for I = 30 A with a randomly di
me t with randomly distributed temperature.

perature T is assumed to remain constant at 353 K. To ensure the
quality of the statistical results, 1000 values of k2 are generated.

Fig. 11 emphasises the fact that the dispersion of Vcell rises with
time. This is an expected result, as the degradation of the cell active
area should be more severe in the long-term fuel cell use [19].

It can also be noticed that the degradation on Vcell is more spread
with the Gaussian temperature than the uniform one. A visual anal-
ysis of the output voltage distribution can be done by plotting the

histogram in each case at a specific time of 1500 h in Fig. 12.

As found earlier, the distribution of Vcell with gaussianly gen-
erated degradation rates seems Gaussian and the distribution of
Vcell with a uniformly generated degradation rates seems uni-
form.

stributed degradation rate of the cell active area.
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Fig. 12. Histogram of Vcell at t =

The output voltage analysis is displayed on the graphs of the
oefficient of variance, the skewness and the kurtosis of Vcell
ver the current time with both stochastical degradation rates k2
Fig. 13).

In the first curve of Fig. 13, 10% of uncertainty on the degradation
ate is considered. It is realistic according to ref. [34], the resulting
ncertainty on Vcell is less than 10% over time. This result can be

mportant for fuel cell designers. Until 2000 h work-in, the skew-

ess of Vcell with Gaussian and uniform degradation rates is nearly
ymmetric meanwhile the kurtosis is 3 and 1.8, respectively.

To conclude, the distribution of the output voltage follows the
istribution of the input degradation rate until 2000 h lifetime of
he model. This is confirmed by the histogram of Fig. 12 which corre-

Fig. 13. Coefficient of variance, skewness and kurtosis o
with randomly distributed k2.

sponds to a lifetime of 1500 h. After 2000 h lifetime, with a Gaussian
k2, the resulting Vcell is no more Gaussian and the resulting Vcell is
no more uniform for a uniform k2.

In the next section, the temperature and the degradation rate k2
are generated randomly in order to meet real operational conditions
in the fuel cell.

4.2.3. Effects of combined uncertainties on the temperature and

on the degradation rate of the cell active area

This case is the combination of both Sections 4.2.1 and 4.2.2
cases, the temperature T and the degradation rate k2 of the mem-
brane are assumed to follow a Gaussian and then a uniform
distribution with the same parameters as in the previous cases.

f Vcell versus time t with randomly distributed k2.
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Fig. 14. Vcell versus time for I = 30

Fig. 14 confirms the observations made about the influence of
ifetime on the voltage of the cell as the spread of distributions rises
radually as time runs in both cases.

A visual analysis of Fig. 15 fails because the distribution type is
ot so obvious as in the previous cases.

To complete this study, it is necessary to plot the coefficient of
ariance of Vcell, the skewness, the kurtosis in Fig. 16.

The first curve of Fig. 16 shows that a 1% uncertainty on the

nput temperature and 10% uncertainty on the input degradation
ate result in an exponential growth of the Vcell uncertainty higher
han 1% but inferior to 10% when the long-term use of the cell is less
han 3000 h. A 1% uncertainty on the input temperature and a 10%

Fig. 15. Histogram of Vcell at t = 1500 h w
h randomly distributed T and k2.

uncertainty on the input degradation rate are realistic according to
refs. [19,30,34].

An analysis of the skewness and kurtosis curves in Fig. 16 shows
that up to 1000 h lifetime, the output voltage distribution nearly
follows the distribution of the inputs (temperature and degrada-
tion rate). After 1000 h lifetime, the resulting output voltage is
neither Gaussian for Gaussian inputs, nor uniform for uniform
inputs.
It can also be noticed that the different values obtained here are
combinations of the first two previous cases.

To analyse the effects of major parameters of this model, the
Response Surface Method is used followed by a statistical sensitivity

ith randomly distributed T and k2.
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ith randomly distributed temperature and degradation rate of the cell active area.
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Table 4
Factor effects on the fuel cell voltage.

Factor effects Values

ˇ0 5.5323355e−001
ˇ1 −1.1791774e−002
ˇ2 −4.2488864e−003
ˇ3 7.5509077e−003
ˇ4 −3.6824034e−004
ˇ5 −6.5639348e−005
ˇ6 −5.6995501e−005

can simplify Eq. (8) into the following equation:

V̂cell = ˇ0 + ˇ1T + ˇ2k2 + ˇ3t (9)
Fig. 16. Coefficient of variance, skewness and kurtosis of Vcell versus time w

nalysis to compute the contributions of the factors to the fuel cell
oltage.

. Full factorial design analysis on the degrading PEM fuel
ell model

This section gathers two sub-sections: sub-Sections 5.1 and 5.2.
he first one studies the effects of the first order interactions of the
ajor parameters on the fuel cell voltage considering those param-

ters deterministic. The objective is to conclude whether those
nteractions are to be taken in account in a design of experiment
r not. Once this established, a random design of experiment will
e performed on the major parameters for comparison with the
esults obtained in the first four sections of this work in the second
ub-Section 5.2.

.1. Effects of the interaction factors

The Response Surface Method (RSM) estimates the linear effects,
he quadratic effects and the interactions of a few important factors
hosen before using screening procedures. The general expression
f the RSM analytical models is simple when written in a matrix
orm:

ˆ = X · ˆ̌ (6)

is the mathematical function, here Vcell of expression (1). It can
lso be a vector of experimental results. ŷ is the vector of the polyno-
ial approximation at each experimental point (in fact, y = ŷ + ε). ε

orresponds to the fitting error. X is the design matrix and depends
n the numerical point position and on the type of polynomial
odel used. ˆ̌ is the estimated coefficient vector.

ˆ = (Xt · X)
−1 · Xt · y (7)

For this work, a quadratic regression is used to fit the data and
he coefficients are obtained by minimizing the square of the error.
ˆcell = ˇ0 + ˇ1T + ˇ2k2 + ˇ3t + ˇ4T2 + ˇ5(k2)2 + ˇ6t2

+ˇ7T · k2 + ˇ8T · t + ˇ9k2 · t (8)

here ˇi, i = 0, . . ., 9 are the factor effects.
ˇ7 −1.2063074e−003
ˇ8 1.6778221e−004
ˇ9 6.3046959e−005

Here the lifetime factor t will have nine levels, and factors T and
k2 will have three levels as stated in the chart below.

The number of numerical experiments is 9 × 3 × 3 = 81 for all
combinations of t, T and k2 levels.

The results of the factor effects ˇi, i = 0, . . ., 9 found are in Table 4.
The ANOVA analysis [40] (Fig. 17) proves that the influence of all

the first order interactions is less than 6% which is negligible, so we
Fig. 17. Contributions of each factor to the fuel cell voltage.



324 L. Placca et al. / Journal of Power Sources 194 (2009) 313–327

actor

n
t
t
t
s

i
c
t
t

t

d
a
l
w
y
c
t
i

5

u
t

T
L

F

m
s
m
s
m
s

Fig. 18. Effects of each f

Fig. 18 represents the effects of each factor t, k2 and T using the
ew Eq. (9): the first curve shows that Vcell decreases with lifetime
, the second curve indicates that Vcell falls with a rising degrada-
ion rate k2 and the last curve shows that Vcell increases with the
emperature T. The results of Fig. 18 agree with the results of the
imulation part.

R2 is the multiple regression correlation and is very important
n statistical modelling. This coefficient is between 0 and 1. A value
lose to zero involves a poor model whereas a value of 1 means
hat the model exactly fits the measurement and totally explains
he studied phenomenon.

For this model with Eq. (9), we found R2 = 0.987 which shows
he accuracy of this model.

The most important factors are t, k2 and T. To complete the
esign of experiment, each factor will be considered with its mean
nd its standard deviation. So there will be six factors for a two-
evel full factorial design which requires 64 runs (26). Each factor

ill be randomly generated 1000 times and then an ANOVA anal-
sis will be done on the output voltage. All the factor levels are
hosen based on the results of the first part of this work in order
o avoid an overlap in the output voltage and to cover the region of
nterest.
.2. Random full design analysis and results

A full design analysis for the degrading PEM fuel cell model is
sed by considering six main factors and each of them at two levels,
he details of which are given in Table 5.

able 5
evels of the main factors.

actors Parameters Lower level Upper level

t Mean of t (h) 750 2250
t Standard deviation of t 0.1 0.2
k2 Mean of k2 10−4 2 × 10−4

k2 Standard deviation of k2 0.1 0.2
T Mean of T 343 363

T Standard deviation of T 0.01 0.08
t, k2 and T using Eq. (9).

The other parameters remain the same as in the simulation sec-
tion of this work. Each treatment combination is replicated 1000
times.

Fig. 19 represents the effects of each of the six factors on the
output voltage.

Concerning the first factor, the graph on the first line in the first
column from the left clearly indicates that a higher lifetime results
in a lower and more spread mean of Vcell. Below this graph in the
same column, as expected the standard deviation of Vcell increases
with the mean of lifetime on the second graph. The third graph
of the same column shows a skewness around 0 for a lifetime less
than 1000 h and very spread after 2000 h. Before 1000 h lifetime, the
skewness is nearly a symmetric distribution’s skewness and after a
long run work-in (2000 h), the skewness is no longer a symmetric
distribution skewness. As for the skewness graph, the kurtosis one
shows a nearly Gaussian distribution before 1000 h and a not Gaus-
sian distribution after 2000 h. In addition, the kurtosis rises slightly
with mean of time. These results on the skewness and the kurto-
sis are acceptable compared with results of the simulation part in
Section 4.2.3.

The effects of the mean of the degradation rate k2 on the Vcell
distribution are represented in the second column of Fig. 19. The
mean of Vcell decreases with a higher degradation rate on the first
graph of this column and is more spread with a rising mean of k2
which is confirmed by the second graph. The third graph of the
same column shows that the skewness of Vcell declines slightly
with a high mean of k2 and the fourth one indicates that the
kurtosis remains almost constant. The skewness and the kurto-
sis results confirm results found in Section 4.2.2 of the simulation
part.

The third column of Fig. 19 analyses the effects of the mean of
temperature T. The first graph of this column shows a climb of
the mean of Vcell with a higher temperature and the second one

points out a slight decline of the standard deviation. This is coher-
ent with the results of Section 4.2.1 while analysing the graph of
the coefficient of variance (COV). The third and the fourth graphs
of this column indicate a nearly Gaussian distribution for a rising
temperature T which confirms the results of Section 4.2.1.
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Fig. 19. Effects of each of the

The effects of the standard deviation of the current time t are
escribed by the graphs in the fourth column of Fig. 19. According
o the first and the second graphs of this column, the mean and
he standard deviation of Vcell remain relatively constant with an
ncreasing standard deviation of lifetime t. The third graph and the
ourth graph indicate respectively a slight drop of the skewness of
cell and the kurtosis of Vcell does not change with a rising standard
eviation.

The fifth column of Fig. 19 describes the effects of the standard
eviation of the degradation rate k2. Referring to the first and the
econd graphs of this column, the mean and the standard devia-

ion of Vcell remain relatively constant with an increasing standard
eviation of k2. The third graph indicates a slight drop of the skew-
ess of Vcell and the kurtosis of Vcell slightly increases with a rising
tandard deviation on the fourth graph.

able 6
ontribution of each of the main factors to the mean, standard deviation, skewness and k

actors Contributions to the

Mean of Vcell (%) Standard deviation of Vcell

t 30.322112 1.434557
t 0.013962 0.273815
k2 14.540507 0.789673

k2 0.025757 0.381841
T 48.507651 1.049

T 1.189434 94.211099
rror 5.400578 1.872751
ctors on the output voltage.

Finally, the last column of Fig. 19 represents the influence of the
standard deviation of the temperature T on Vcell distribution. The
mean of Vcell slightly decreases with an increased standard devia-
tion of the temperature on the first graph. The standard deviation
of Vcell rises with the standard deviation of the temperature on the
second graph. The skewness of Vcell goes down with an increas-
ing standard deviation on the temperature on the third graph
meanwhile the kurtosis of Vcell climbs on the last graph. With a
low standard deviation on the temperature (variability of 1%), the
resulting voltage distribution seems to be symmetric but with a
higher variability (8%), it is no longer symmetric. The results on the

kurtosis are similar: with a variability of 1%, the voltage distribution
seems to be Gaussian and at a variability of 8% is no more Gaussian.
The contributions of each of these six factors to the mean, standard
deviation, skewness and kurtosis of Vcell are listed in Table 6.

urtosis of Vcell .

(%) Skewness of Vcell (%) Kurtosis of Vcell (%)

2.440295 0.406626
3.971078 0.529764
4.673607 3.253045
5.113494 1.976349
3.852172 4.860403

48.092272 34.890808
31.857082 54.083006
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This full factorial analysis helps to specify which of the six
arameters have a considerable effect on the output voltage.
ccording to Table 6, the means of lifetime, temperature and degra-
ation rate contribute with more than 93% to the mean of Vcell and
he standard deviation of temperature explains more than 94% of
he standard deviation of Vcell. In addition, it is difficult to conclude
n the skewness and kurtosis of Vcell by only considering the six
revious factors because the error involved is respectively more
han 30% and more than 50%. The four important parameters from
his analysis for PEM fuel cell design are: the mean of lifetime t,
he mean of the degradation rate k2, the mean and the standard
eviation of the temperature T.

. Conclusion

This work contributes to the knowledge concerning the influ-
nce of temperature uncertainties on the voltage output of a proton
xchange membrane fuel cell. The first model does not include
ny degradation and helps to consider the involvements due only
o the temperature. With a randomly distributed temperature, it
omes out that the cell output voltage of the model seems to fol-
ow the distribution of the input temperature. The second model
akes into account a degradation rate of the active cell area with
ime. In this case, with a Gaussian and a uniform distribution of
he temperature, the resulting voltage distribution is respectively
early Gaussian and uniform. The fact that the resulting voltage
istribution does not rigorously follow the input distribution of
he temperature proves that the degradation rate is an important
arameter to consider. So the case with a randomly generated
egradation rate of the membrane and a constant temperature
as studied. It comes out that until 2000 h of lifetime; the out-
ut voltage follows the distribution of the input distribution of the
egradation rate. After 2000 h, it is no longer true. With this sec-
nd case, it becomes necessary to study the combinations of both
ases: the temperature and the degradation rate following both a
aussian distribution and then a uniform distribution. The fuel cell
odel shows that until 1000 h of current time the resulting volt-

ge follows the distribution of the inputs and after 1000 h, it is no
onger the case. Current time is also important in this model. To
omplete the previous simulation work, a RSM method is used to
tudy the effects of interactions of the three most important param-
ters which are the temperature T, the degradation rate k2 and the
urrent time t. The objective of the method is to determine if the
utput voltage can be represented with a polynomial expression of
hose parameters that fits the results of the simulation. The interac-
ions between the three parameters are proved to be negligible and
linear expression of the three parameters fits well the simulated
utput voltage. To improve the knowledge on the specific part of
he parameter that has an important effect on the output voltage,
ach parameter is split into two parts: its mean and its standard
eviation.

To allow comparisons with the simulations, a random full design
f experiment is performed on the six new parameters. The results
onfirm the simulations. Furthermore, three parameters are proved
o have the most important effects on the mean of the output volt-
ge: the mean of lifetime t, the mean of the degradation rate k2,
he mean of the temperature T. As far as the standard deviation of
cell is concerned, the standard deviation of the temperature has
he greatest contribution.

The results of this work are interesting for designing PEM
uel cell and the methodology introduced here can be applied

o more realistic models by considering more parameters subject
o uncertainty. However, researchers should be aware of the fact
hat implementing this method on complex models with many
ncertain parameters will need greater computational require-
ents.
ources 194 (2009) 313–327

Appendix A. Statistical tools [31]

A.1. Gaussian or normal distribution

The normal distribution, also called the Gaussian distribution, is
a two-parameter family of curves: the first parameter which is
the location parameter is the mean (“average”, �) and the second
parameter which is the scale parameter is the standard deviation
(	). The standard normal distribution is the normal distribution with
a mean of zero and a standard deviation of one.

A.2. Continuous uniform distribution

The continuous uniform distribution is a family of probability
distributions such that for each member of the family, all intervals
of the same length on the distribution’s support are equally prob-
able. The support is defined by the two parameters, a and b, which
are its minimum and maximum values. The distribution is often
abbreviated U (a, b).

The probability density function is a horizontal line segment
between a and b at 1/(b − a).

f (x) =
{

1
b − a

, a ≤ x ≤ b

0, x < a, x > b
(a1)

A.3. Skewness

Skewness is defined as a measure of the lack of symmetry of a
probability distribution of a real-valued random variable.

Skewness, the third standardized moment, is written as 
1 and
defined as


1 = �3

	3
(a2)

where �3 is the third moment about the mean and 	 is the standard
deviation.

Larger values in magnitude indicate more skewness in the dis-
tribution of observations.

A.4. Kurtosis

Kurtosis describes the extent of the peak in a distribution.
Smaller values (in magnitude) indicate a flatter, more uniform dis-
tribution. Higher kurtosis means more of the variance is due to
infrequent extreme deviations, as opposed to frequent modestly
sized deviations.

Kurtosis, the fourth standardized moment is defined as:

kurtosis = �4

	4
(a3)

where �4 is the fourth moment about the mean and 	 is the stan-
dard deviation.

A high kurtosis distribution has a sharper “peak” and fatter
“tails”, while a low kurtosis distribution has a more rounded peak
with wider “shoulders”.

A.5. ANOVA analysis

Analysis of variance is a statistical procedure for summarizing
a classical linear model; a decomposition of sum of squares into
a component for each source of variation in the model along with

the F-test of the hypothesis that any given source of variation in the
model is zero. ANOVA can be extended in two different ways when
applied to generalized linear models, multilevel models and other
extensions of classical regression: the first one is to use the F-test
to compare nested models, to test the hypothesis that the simpler
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f the models is sufficient to explain the data, the second way is to
nterpret the variance decomposition as an inference for the vari-
nces of batches of parameters (sources of variation) in multilevel
egressions. Ref. [40] details the different types of ANOVA analysis.
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